欢迎来到 深圳华盛源机电有限公司 ! 设为首页 | 加入收藏
简体 ENG
首页 - 解决方案 - 散热器与风口距离(W/mK)
解决方案
散热器与风口距离(W/mK)

  随着电源技术的不断进步,电源类产品功率密度不断地提高,电源类产品体积也大大缩小了。产品体积不断的缩小,要求产品结构必须紧凑,而热设计又制约着结构设计,在满足热设计要求的前提下,通过合理、正确地空间布局,最大限度的压缩电源产品的空间以提高模块的功率密度恰好是热设计优化的主要任务。

  

  在强迫吹风冷却情形下,由于风扇旋涡swirl存在,散热器与风扇间的距离对其流场均匀度影响较大,理论上,当散热器与风扇间的距离足够大时,风扇旋涡swirl对流场的影响较小,然而在产品设计中,由于体积的限制,不可能允许散热器与风扇间的距离太大,换句话说,风扇旋涡swirl对散热的影响是一定存在的,本文利用FLOTHERM热仿真分析软件,通过合理控制热设计冗余,力求得出一个较合理的风扇与散热器的距离,为电源产品的结构设计提供借鉴。


仿真分析模型



    下图为吹风冷却时风扇出风口与散热器间距离对模块散热影响研究的仿真分析模型。  



  在该模型中,冷却空气入口温度,也即是模块工作的环境温度为40C。系统采用三个外形直径为150.0mm,HUB直径为75.0mm轴流风扇作为该模块的冷却风扇,在改变风扇与散热器间的距离时,仅仅延伸求解域的大小,不改变该模型中散热器的结构尺寸、功率元器件的大小、布置位置以及散热器部分的网格划分,力图使不同模型间的唯一差异为风扇与散热器间的距离。同时,为了能够很好地反映风扇与散热器间距离对模块散热性能的影响,在模块前沿定义了4个温度监控点,用这些监控点来显示功率器件与散热器接触面的中间点温度。模块散热性能的优劣,不仅可以通过冷却风扇工作点的相关信息(流体的质量或体积流量、系统阻力或风扇工作压力)来表现,而且还可以通过监控点的温度变化值、求解域空间的流场均匀程度等得到直观地体现。



仿真分析结果



1. 风扇工作点及温度监控点

  由图2可以看出,在该模块中,流经冷却风扇流体的体积流量随着风扇与散热器间距离的增大而增大,并且该体积流量的增大在Distance为25.0mm~75.0mm之间尤为显著,也即是说:此时冷却风扇的流量对该距离非常敏感,把该距离稍微增大一点,流体流经风扇的体积流量就有相当显著的变化。同时,当Distance的取值为75.0mm~175.0mm之间时,虽然从总体上而言风扇的体积流量也随距离的增大而增加,但其增大的幅度较前一阶段有明显的下降,也即是说:此时风扇流量处于对该距离的不太敏感区域。上述的结论,我们也可以从冷却风扇工作点的压力值与距离之间的关系图(图2)及各个温度监控点随距离的变化关系曲线(如图3、4、5、6等)上可以得到进一步的证明。

在图3、4、5、6中,需要说明一点的是:温度监控点1和2反映出了上述的分析,即:随距离的增大,流经冷却风扇的风量得到加强,散热器的换热得到强化,其上功率元器件的壳温得到一定程度的下降。但是,仔细观察监控点3、4(见图5、6),我们似乎不能够根据上述的分析,得到一个:



 

版权所有 深圳华盛源机电有限公司 联系电话:0755-2988-6718
COPYRIGHT © 2015~2019 HUSHENGYUAN MATERIAL TECHNOLOGY

隐藏
免费咨询热线0755-29886698